

Chain Clamping Set with lanyard

12700

Material

Alloy steel.

Set contents:

1 x tension hook,

1 x take-up hook,

1 x clamp chain protection set,

.W0112 (2 x 492mm, 1 x 238mm, 1 x 15,9mm),

.W0116 (1x991mm, 1x229mm, 1x483, 1x25mm),

4 x split chain links,

6 x plastic protectors (to protect the workpiece),

1 x chain clamp protection lanyard.

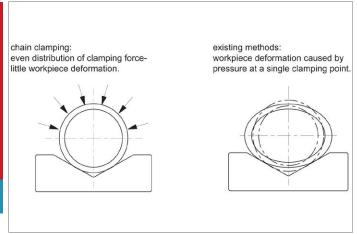
Note: M20 and M24 clamp sets only have 3 chain lengths.

Technical Notes

For clamping valves, flanges, pump cases etc - can be used on fixture sub-plates or machine tables. The clamping force is generated by the eccentric shaft, and the force is determined by the take-up which is adjusted using the knurled screw. Please order T-nuts no. 24000 separately if

required.

Tips


The even distribution of the clamping force reduces workpiece deformation. The workpieces are protected from marking of the chain by plastic protectors which are locked into the chain segments. Chains enable a large range of adjustment. See table opposite for details for achievable clamping forces.

Order No.	Size		For T-sl	ot	Combined chain length	th	d_1	h_1	h_1	h ₂	h ₂	h ₃	h ₄	Weight
					max.			min.	max.	min.	max.			g
12700.W0112	12	1	4, 16 of	18	1302		M12	83	108.0	100	118	18	18	853
12700.W0116	16	18,	20, 22	or 24	1829		M16	110	146.0	122	153	25	25	1902
12700.W0120	20		22 to 2	28	4940		M20	162	205.5	195	250	41	41	6037
12700.W0124	24		28 to 3	6	4940		M24	166	209.0	199	260	41	41	6040
					Permissible torque								Clam	ping forc
Order No.	h ₅	I_1	l ₂	l ₃	Nm	W_1	W_2	W_4	A/F	Stroke s ₁	Clamp	stroke s ₂		kN
					max.									max.
12700.W0112	8	50	34	54	45	34	47	21	36	25.0		18		15
12700.W0116	10	64	44	70	90	37	62	29	46	36.0		31		40
12700.W0120	10	91	64	98	190	58	86	48	65	43.5		55		75
12700.W0124	10	91	64	98	300	58	86	48	65	43.0		61		120

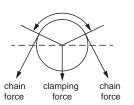
Chain Clamping Set with lanyard

Chain Clamping Set

Our comprehensive range of clamping elements includes a compact and powerful workpiece clamping element, the chain clamping set no. 12700. This set was specifically designed for clamping large workpieces with round or arched surfaces. Due to an increase in the bearing surface of the chain, the clamping force is distributed across the workpiece thereby reducing deformation.

Setting Up

 Attach the hook unit and the take-up unit as close to the workpiece as possible.


 Turn the knurled nut on the take-up unit until the pull rod is fully extended. Select the number of chain segments required for the workpiece and attach to the pull rod.

 Fine adjustment of the chain lengths is made by tightening the knurled nut until the chain slightly touches the workpiece.

4. To clamp the work piece connect the free end of the chain onto the hook unit. Using a hex key tighten the eccentric shaft, and ensure the lever is rotated to its fully locked position (180°). The workpiece is now clamped.

Important Factors in Selection of Chain Clamp

The clamping force achievable through the Wixroyd chain clamp set is dependent upon three factors:

- Workpiece diameter (see graph).
- Chain length and stretch (see graph).
- Contact angle of chain and workpiece (see table below right).

	n Length (m)								
6,5										
6,0					+					
5,5	5,4						Chain s	troke g	(M16) = 30 r	nm
5,0	0,4									
1,5					\perp				27,	5
1,0										
3	3,6	Cł	nain stroke	g (M12) = 10	6 mm		2	22,0		
3,5						19	6			
3,0						16,5				_
2,5					4					
2,0			9,0	110						
,5			//	11,0						
,0	4,	5					M12 ch	ain upto	45 Nm	
	//	5,5					M16 ch	ain upto	90 Nm	
),5										
0 💆		5,0	10	0,0	15,0	21	0,0	25	0	3

Chain Length and Stretch

Torque value of 50 Nm is used for M12 set.

Torque value of 90 Nm is used for M16 set.

	a de la constantina della cons	el el el	O.C.	
	-8,/		1.6	
			10-0	
-	1000			
10				

Clamping with the chain clamp set.

	Torque	α = 105°	α = 120°	α = 135°	α = 150°	α = 180°
M12	50Nm	80%	87%	92%	97%	100%
M16	90Nm	80%	87%	92%	97%	100%

Important Note: Achievable clamping force decreases as the contact angle of chain and workpiece (α) reduces. Please use the table above as a guide.

Table of Clamping Force to Contact Angle α

