

Coolant Nozzles - Black Eye

max. 10 bar

Coolant Nozzles

Body: acetal. Ball: stainless steel.

Technical Notes

Max. temperature 70°C. Max. pressure 10 bar. symbola/symbol is an angle of adjustment either side of centre line.

For extension tubes see part nos. 20090 and 20092.

For spray tips see part nos. 20080 and 20082.

Tips

d₁

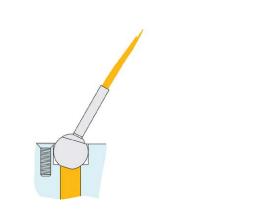
Easy to aim replacement for basic spherical

coolant nozzles. Install, lock in place then aim the stainless steel ball with the tip of a hex key.

20000

Choose tapped version if you need to use with extension tubes or if occasional plugging of unit is required (set screw included).

Order No.	d ₁	d ₂	Jet bore d ₂	α
20000.W0100	10	2.8	Plain	±35°
20000.W0120	10	4.0	Plain	±35°
20000.W0140	14	4.0	Plain	±35°
20000.W0150	15	4.0	Plain	±35°
20000.W0180	18	4.0	Plain	±35°
20000.W0220	22	5.6	Plain	±35°
20000.W2370	3/8"	2.8	Plain	±35°
20000.W2500	1/2"	4.0	Plain	±35°
20000.W2630	5/8"	4.0	Plain	±35°
20000.W6100	10	M 3,5x0,6	Threaded	±35°
20000.W6120	12	M 4,0x0,7	Threaded	±35°
20000.W6140	14	M 4,0x0,7	Threaded	±35°
20000.W6150	15	M 4,0x0,7	Threaded	±35°
20000.W6180	18	M 5,0x0,8	Threaded	±35°
20000.W6220	22	M 6,0x1,0	Threaded	±35°
20000.W8370	3/8"	M 3,5x0,6	Threaded	±35°
20000.W8500	1/2"	M 4,0x0,7	Threaded	±35°
20000.W8630	5/8"	M 4,0x0,7	Threaded	±35°



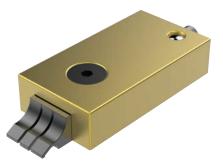
Coolant Nozzles - Black Eye max. 10 bar

Horizontal Clamping

up to 2.2 tons

Clamping & Height Setting

COOLANT NOZZLES


Clamping Torque

11040/CL2040				
Clamping Torque	Clamping Force			
N/m	Ν			
50	23000			
40	18000			
30	12500			
25	11500			
20	9500			

11070/CL2070				
Clamping Torque	Clamping Force			
N/m	Ν			
60	16500			
50	15000			
40	12000			
30	10000			
25	8000			
20	7000			

11081/CL2081			
Clamping Torque	Clamping Force		
N/m	Ν		
5	6600		
4.5	5500		
4	4900		

10940/CL0030				
Clamping Torque	Clamping Force			
N/m	Ν			
8.5	4000			
8	3800			
7	3400			
6	3000			
5	2500			
4	2000			

0333 207 4497

Fixing Elements

What Flow Rate of Coolant is Required?

Choose a nozzle with an orifice size that matches your pump's capacity.

Select an orifice size too big and coolant pressure will drop off, an orifice size too small and an inadequate amount of coolant will reach the tool tip and can result in damage. **Note:** Flow rates are based on water at 20°. Actual results

Note: Flow rates are based on water at 20°. Actual results may vary with fluid type, extension length and aiming angle.

System pressure (bar)	0.35	0.7	1.4	2.0	2.8	4.1	5.5
Orifice diameter (mm)			Flow r	ate (litres/n	ninute)		
1.02	0.32	0.45	0.64	0.77	0.91	1.18	1.41
1.57	0.86	1.14	1.68	2	2.32	2.82	3.32
2.18	1.64	2.32	3.27	3.86	4.55	5.46	6.82
2.79	2.91	4.09	6.36	7.27	8.18	10	11.37
4.06	6.36	9.09	12.73	15.91	18.18	21.82	25.46
5.59	11.37	16.82	23.64	30.46	35.46	42.28	48.19
System pressure (bar)	6.9	10.3	13.8	20.7	34.5	69.0	103.5
Orifice diameter (mm)			Flow r	ate (litres/n	ninute)		
1.02	1.59	1.86	2.09	2.77	4	5.46	6.36
1.57	3.64	4.55	5.46	6.82	9.55	13.64	17.28
2.18	7.73	9.09	10.46	12.73	16.82	23.64	28.64
2.79	14.09	16.37	18.64	23.64	29.55	40.46	49.55
4.06	28.19	34.55	41.37	49.1	63.65	90.01	110.47
5.59	53.64	65.46	75.01	89.1	114.56	161.39	197.75

Calculating Coolant Velocity

To calculate the average coolant exit velocity (important in some grinding operations where it is often desirable to match or exceed the peripheral velocity of the wheel) refer to the formula below. Choose an orifice size that produces sufficient back pressure to achieve the desired velocity.

$V = (17.11 \times 10^{-5}) \times F$	Where;
(d x 10 ⁻³) ²	V = Velocity in m/s
	$C = Constant of 17.11 \times 10^{-5}$
	F = Flow rate through orifice in litres/min (see table above)
	d = Orifice diameter (mm) from product tables
Choose a nozzle extension	that suits your application. Short projections are more

Nozzle Extensions

Choose a nozzle extension that suits your application. Short projections are more compact and less likely to be knocked out of position by swarf or vibration. Longer extensions are easier to aim, produce a more streamline or laminar flow and shoot further.

A Word About Coolant Pumps

The most common coolant pump on CNC machine tools is a single stage centrifugal pump, normally designed to move high volumes of water at low pressure (typically 0.2 to 1.4 bar). Multi-stage centrifugal pumps are capable of higher pressures (typically 1.4 to 14 bar) while still producing high flow rates. Positive displacement pumps are used for very high pressure applications up to 140 bar and are generally used with small diameter orifices due to their lower flow rates.

wixroyd.com