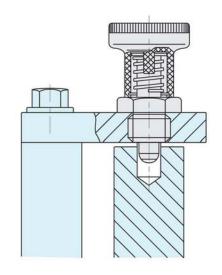

# Index Plungers - Pull Grip

for thin walled parts










non locking

locking

| Order No.<br>Steel | Order No.<br>Stainless | Туре        | d <sub>1</sub><br>-0,02<br>-0,04 | d <sub>2</sub> | d <sub>3</sub> | <sub>1</sub> ≈ | l <sub>2</sub><br>min. | l <sub>3</sub><br>-0,15 | I <sub>4</sub> | a/f | g  | Sprin<br>g<br>load*<br>f <sub>2</sub><br>N≈ | ₫ d<br>g |
|--------------------|------------------------|-------------|----------------------------------|----------------|----------------|----------------|------------------------|-------------------------|----------------|-----|----|---------------------------------------------|----------|
| 32730.W0226        | 32730.W0246            | Non Locking | 6                                | M12x1,5        | 25             | 45             | 6                      | 10                      | 5              | 17  | 7  | 19                                          | 35,0     |
| 32730.W0228        | 32730.W0248            | Non Locking | 8                                | M16x1,5        | 31             | 54             | 8                      | 12                      | 6              | 19  | 14 | 24                                          | 62,0     |
| 32730.W0236        | 32730.W0256            | Locking     | 6                                | M12x1,5        | 25             | 45             | 6                      | 10                      | 5              | 17  | 7  | 19                                          | 35,0     |
| 32730.W0238        | 32730.W0258            | Locking     | 8                                | M16x1,5        | 31             | 54             | 8                      | 12                      | 6              | 19  | 14 | 24                                          | 61,0     |
| 32700.W0116        | 32700.W0516            | Lock Nut    | -                                | M12x1,5        | -              | -              | -                      | -                       | -              | -   | -  | -                                           | 7,4      |
| 32700.W0118        | 32700.W0518            | Lock Nut    | -                                | M16x1,5        | -              | -              | -                      | -                       | _              | -   | -  | -                                           | 18,0     |







#### Material

## Free Cutting Steel type-

Body: free cutting steel, blackened. Pin: steel, hardened.

Grip: thermoplastic PA6, black.

Stainless steel type -Body: stainless steel 1.4305 (AISI

Pin: stainless steel 1.4305 (AISI 303), nickel plated. Grip: thermoplastic PA6, black.

#### **Technical Notes**

"Locking" type- enable pin to be held in retracted/non-projecting position; pull back grip, turn 90° to engage 'locking' on a notched catch.

"Non Locking" type- pin simply springs back when grip released. Short bodied index plungers for compact applications. Hexagon collar improves leverage for secure installation.

Temperature resistance from -30° to +80°C.

Distance collars no. 32750 can be used to adapt screw length. Spring loads \* = statistical average.







## A wide selection of solutions

- Locating and positioning.
- Indexing.
- Securing.
- Positive locking.
- Rapid adjustment of all kinds of tables, platforms and fixtures.
- Machine and fixture design.
- OEM products.
- Sports equipment.
- Medical aides (wheelchairs etc.).
- · Aerospace.
- Machine cabinets.

## **Applications**





Steel with plastic grip



Stainless with plastic grip



Stainless body and grip



Locking (park)



Non locking (spring back)



Push pull





Standard grip



Lever grip





**Pull ring** 



Threaded for bespoke handle





Fine threaded



Coarse thread



Flange mount



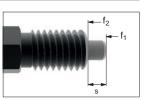
Thin wall mount



Weldable

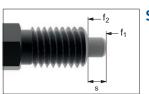
## **Mounting options**

• Unless otherwise stated, grips on index plungers are not removeable.


- Many of the pins on index plungers are toleranced to either the pin or the hole. Please refer to the specific product table.
- Index plungers are not recommended for shear load applications.

|     | Pin Tol.       | Hole Tol. |
|-----|----------------|-----------|
| 1   | h              | +0,03     |
|     | h <sub>9</sub> | +0,08     |
| (2) | -0,02          | ш         |
|     | 0.04           | 117       |

Additional technical notes


S Stroke, or movement of plunger's pin.

- The force required in Newtons (N) to over come the static strength of the spring and achieve initial movement of the plunger's pin.
- The force required in Newtons (N) to fully compress the spring until the pin is fully depressed against the plunger's body.

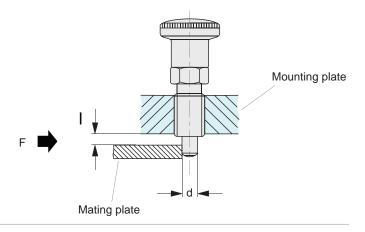


**Spring loads** 








# Computing the strength of index plungers

for shear loads / flexure loads of the plunger pin



### Flexure loads

As soon as a gap I exists between the mounting plate in which the index plunger is installed, and the mating or base plate, the load must be considered to be as per a flexure load, with rod clamped at one side. With this approach, the calculation is made against the bending of the index plunger.



## Formulas for computation

| Resistance torque               | Flexural stress           | Flexural strength                                                        |
|---------------------------------|---------------------------|--------------------------------------------------------------------------|
| $W = \frac{\pi \times d^3}{32}$ | $M_b = \sigma_b \times W$ | $F = \frac{M_b}{I} = \frac{\sigma_b \times \pi \times d^3}{I \times 32}$ |

## **Material characteristics**

The yield or substitute yield limit (Re / Rp 0,2) shown in the table opposite has been determine in tension tests involving tension specimen in accordance with DIN 50125-B6-30.

These tests constitute the basis for the load bearing details given.

| Material Description | Material no. |     |
|----------------------|--------------|-----|
| C45Pb                | 1.0504       | 560 |
| X 10 CrNiS 18 9A     | ISI 303      | 580 |

## Calculation example, load values

## Example:

Index plungers with a bolt diameter of 5 mm made of steel with a yield limit of Re = 560 N/mm², calculation against permanent deformation, the maximum permissible flexural strength is calculated as:

$$F_{per} = \frac{360 \text{ N/mm}^2 \text{ x ft (5mm)}^2}{2\text{mm x 32}} = 3430 \text{ N}$$

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                         | max. flexural strength <b>F</b> in <b>N</b> ,<br>acc. to material and gap <b>l</b> differentiated |       |        |       |        |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------|--------|-------|--------|--|--|--|--|
| 4     1750     1170     1820     1210       5     3430     2290     3550     2370       65     930     3950     6140     4100       8     14070     9380     14570     9710       10     27480     18320     28470     18980       12     47490     31660     49190     32790 |                                                                                                   |       |        |       |        |  |  |  |  |
| 5     3430     2290     3550     2370       65     930     3950     6140     4100       8     14070     9380     14570     9710       10     27480     18320     28470     18980       12     47490     31660     49190     32790                                             | 3                                                                                                 | 740   | 490    | 760   | 510    |  |  |  |  |
| 65     930     3950     6140     4100       8     14070     9380     14570     9710       10     27480     18320     28470     18980       12     47490     31660     49190     32790                                                                                         | 4                                                                                                 | 1750  | 1170   | 1820  | 1210   |  |  |  |  |
| 8     14070     9380     14570     9710       10     27480     18320     28470     18980       12     47490     31660     49190     32790                                                                                                                                     | 5                                                                                                 | 3430  | 2290   | 3550  | 2370   |  |  |  |  |
| 10     27480     18320     28470     18980       12     47490     31660     49190     32790                                                                                                                                                                                   | 65                                                                                                | 930   | 3950   | 6140  | 4100   |  |  |  |  |
| 12 47490 31660 49190 32790                                                                                                                                                                                                                                                    | 8                                                                                                 | 14070 | 9380   | 14570 | 9710   |  |  |  |  |
|                                                                                                                                                                                                                                                                               | 10                                                                                                | 27480 | 18320  | 28470 | 18980  |  |  |  |  |
| 16 90070 102940 93290 119020                                                                                                                                                                                                                                                  | 12                                                                                                | 47490 | 31660  | 49190 | 32790  |  |  |  |  |
|                                                                                                                                                                                                                                                                               | 16                                                                                                | 90070 | 102940 | 93290 | 119020 |  |  |  |  |

## **Safety information**

On principle, the design also needs an adequate safety coefficient to be taken into account. The usual safety coefficients under static load 1.2 to 1.5; pulsating 1.8 to 2.4 and alternating 3 to 4.

## Disclaimer:

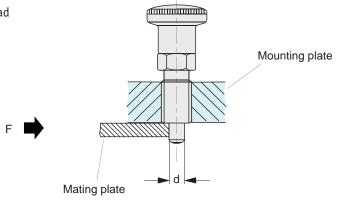
You should carry out your own test series to verify whether a certain product is suitable for your specific applications.

# Computing the strength of index plungers

for shear loads / flexure loads of the plunger pin



### Shear loads


Providing only a very small gap exists between the mounting plate in which the index plunger is installed, and the mounting plate or base plate, the load can be calculated as a clean shear action.

As this is normally not the case, the "flexure" load should be used - see following page.

Approximately 80 % of the bolt's tensile strength is assumed for the shear strength. This approach calculates against the tensile strength Rm, i.e. against the index pin shearing off.

To ensure the permanent and proper function of the index plunger, the yield limit Re must be considered in place of the tensile strength Rm.

Stop using the index plunger if the pin is damaged or deformed.



## Formulas for computation

| Bolt cross-section        | Limit tension          | Shear force                                                         |
|---------------------------|------------------------|---------------------------------------------------------------------|
| $S = \frac{d^2 x \pi}{4}$ | $T_a = 0.8 \times R_m$ | $F = S \times T_a = \frac{d^2 \times \pi}{4} \times 0.8 \times R_m$ |

## **Material characteristics**

The tensile strength shown in the table opposite (Rm) and the yield or substitute yield limit (Re / Rp 0,2) have been determine in tension tests involving tension specimen in accordance with DIN 50125- B6-30

These tests constitute the basis for the load bearing details given.

| Material<br>Description | Material no. | Re<br>in N/mm² | R <sub>m</sub> in N/mm² |
|-------------------------|--------------|----------------|-------------------------|
| C45Pb                   | 1.0504       | 560            | 640                     |
| X 10 CrNiS 18 9A        | ISI 303      | 580            | 740                     |

## Calculation example, load values

## Example:

Index plungers with a bolt diameter of 6 mm made of Stainless Steel with a yield limit of Re = 580 N/mm², calculation against permanent deformation, the maximum permissible shear stress is calculated as:

$$F_{per} = \frac{(6 \text{ mm})^2 \times \pi}{4} \times 0.8 \times 580 \text{ N/mm}^2 = 13120 \text{ N}$$

|               | max. force F in N, acc. to material and strength value differs |        |                        |        |  |  |  |
|---------------|----------------------------------------------------------------|--------|------------------------|--------|--|--|--|
| d             | C45Pb/1.0                                                      | 5045   | X 10 CrNiS 18 9/1.4305 |        |  |  |  |
| Bolt diametre | at Re                                                          | at Rm  | at Re                  | at Rm  |  |  |  |
| 3             | 3160                                                           | 3610   | 3270                   | 4180   |  |  |  |
| 4             | 5620                                                           | 6430   | 5830                   | 7430   |  |  |  |
| 58            | 790                                                            | 10050  | 9110                   | 11620  |  |  |  |
| 6             | 12660                                                          | 14470  | 13120                  | 16730  |  |  |  |
| 8             | 22510                                                          | 25730  | 23320                  | 29750  |  |  |  |
| 10            | 35180                                                          | 40210  | 36440                  | 46490  |  |  |  |
| 12            | 50660                                                          | 57900  | 52470                  | 66950  |  |  |  |
| 16            | 90070                                                          | 102940 | 93290                  | 119020 |  |  |  |

## Safety information

On principle, the design also needs an adequate safety coefficient to be taken into account. The usual safety coefficients under static load 1.2 to 1,5; pulsating 1.8 to 2.4 and alternating 3 to 4.

#### Disclaimer:

You should carry out your own test series to verify whether a certain product is suitable for your specific applications.