

Anti-vibration Bumpers

male

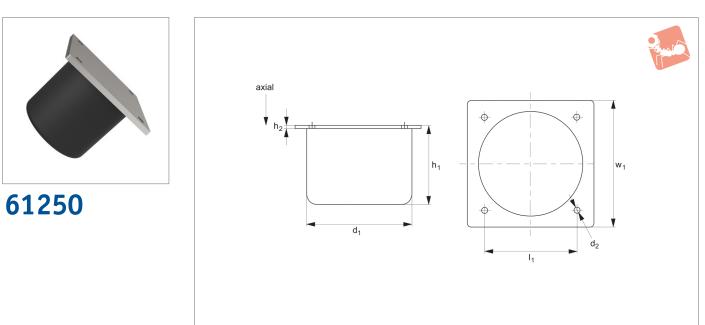
Anti-Vibration

Material

Rubber on silver zinc plated steel (rubber hardness - 55 Shore A).

Tips

These anti-vibration bumpers are used to reduce vibration and shock. Their cylindrical shape ensures that when used in a row, the buffers spread the loads over a number of buffers - reducing the chances of possible overloading.


Order No.	d_1	h	d ₂	I ₁	Compression max.	Axial load kgf max.
61210.W0040	40	32	M 8	30	14	850
61210.W0050	50	40	M10	25	17	1270
61210.W0063	63	50	M10	25	20	1950
61210.W0080	80	63	M12	24	25	3250
61210.W1000	100	80	M12	27	30	4900
61210.W1250	125	100	M16	45	40	7800
61210.W1600	160	125	M16	45	52	12300
61210.W2000	200	160	M20	49	65	19100
61210.W2500	250	200	M20	49	80	30500

Anti-Vibration

Anti-vibration Bumpers flanged

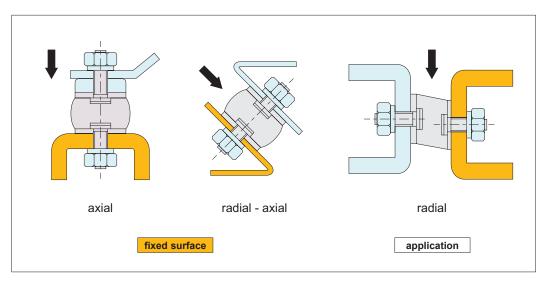
Material

Rubber on silver zinc plated steel (rubber hardness - 55 Shore A).

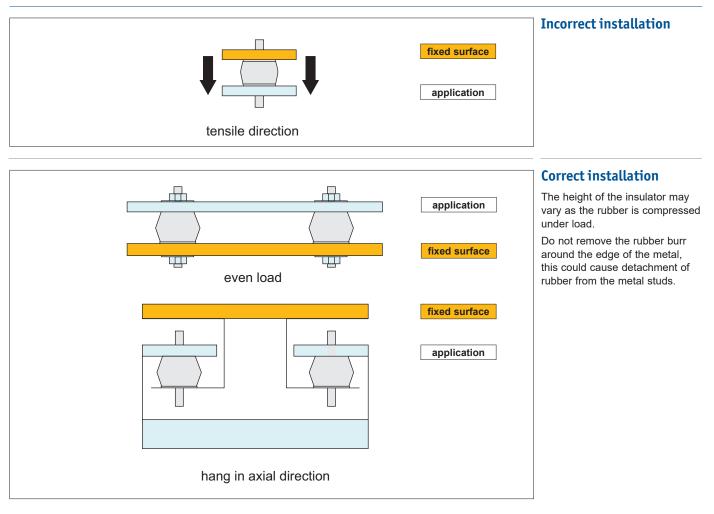
Tips

These anti-vibration bumpers are used to reduce vibration and shock. Their cylindrical shape ensures that, when used in a row, the buffers spread loads over a number of buffers - reducing the chances of possible overloading.

Order No.	d ₁	h ₁	d ₂	I_1	w_1	h ₂	Axial load kgf max.	Momentum kg∙m/s	Deflection m/m max.
61250.W0400	40	32	5.5	40	50	3	850	5	14
61250.W0500	50	40	6.5	50	63	4	1270	10	17
61250.W0630	63	50	6.5	63	80	6	1950	20	20
61250.W0800	80	63	9.0	80	100	6	3250	40	25
61250.W1000	100	80	9.0	100	125	8	4900	80	30
61250.W1250	125	100	11.0	125	160	8	7800	160	40
61250.W1600	160	125	11.0	160	200	10	15000	320	50
61250.W2000	200	160	13.0	200	250	10	19100	630	65
61250.W2500	250	200	13.0	250	315	12	30500	1250	80



installation methods for cylinders


61040 - 61242 Materials Handling

Cylindrical mounts are never to be used in tension, they should only be used in axial or radial. Radial loads are however considerably less than axial loads. Parts with small diameters (d_1) and relatively long lengths (h) cannot accept radial loads.

Acceptable loads

Installation

0333 207 4497