

65722

Material

Rod end housing: Stainless steel DIN 12240-4 (AISI 304).
Joint Ball: Stainless steel 1.4412,
hardened and ground, surface polished.
Race: nylon/teflon/glass compound.
Technical Notes
Maintenance free, for tolerances see tech-
nical page 123, standard thread is right hand thread.

Tips
A2 stainless steel provides good corrosion resistance to a wide range of atmospheric conditions and corrosive media.
It is considered resistant to potable water.

Important Notes

*Denotes fine pitch thread.

Order No.	Thread hand	d_{1}	I_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}	I_{2}	Weight
65722.W0104	Right	5	36	M4	11.11	18	9.0	11	10	18
65722.W0105	Right	5	36	M5	11.11	18	9.0	11	10	18
65722.W0106	Right	6	40	M6	12.70	20	10.0	13	12	24
65722.W0108	Right	8	48	M8	15.87	24	12.5	16	16	45
$65722 . W 0110$	Right	10	57	M10	19.05	28	15.0	19	20	74
65722.W0111	Right	10	57	M10x1,25*	19.05	28	15.0	19	20	74
65722.W0112	Right	12	66	M12	22.22	32	17.5	22	22	109
65722.W0113	Right	12	66	M12x1,25*	22.22	32	17.5	22	22	109
65722.W0114	Right	14	75	M14	25.40	36	20.0	25	25	155
65722.W0116	Right	16	85	M16	28.57	42	22.0	27	28	233
$65722 . W 0117$	Right	16	85	M16x1,5*	28.57	42	22.0	27	28	233
$65722 . W 0118$	Right	18	94	M18x1,5*	31.75	46	25.0	31	32	310
65722.W0120	Right	20	102	M20x1,5*	34.92	50	27.5	34	33	386
65722.W0122	Right	22	111	M $22 \times 1,5 *$	38.10	54	30.0	38	37	520
65722.W0125	Right	25	124	M24x2*	42.85	60	33.5	42	42	705
65722.W0130	Right	30	145	M 30×2 *	50.80	70	40.0	50	51	1084
65722.W0131	Right	30	145	M27x2*	50.80	70	40.0	50	51	1084
65722.W0504	Left	5	36	M4	11.11	18	9.0	11	10	18
65722.W0505	Left	5	36	M5	11.11	18	9.0	11	10	18
65722.W0506	Left	6	40	M6	12.70	20	10.0	13	12	24
65722.W0508	Left	8	48	M8	15.87	24	12.5	16	16	45
65722.W0510	Left	10	57	M10	19.05	28	15.0	19	20	74
65722.W0511	Left	10	57	M10x1,25*	19.05	28	15.0	19	20	74
65722.W0512	Left	12	66	M12	22.22	32	17.5	22	22	109
65722.W0513	Left	12	66	M12x1,25*	22.22	32	17.5	22	22	109
65722.W0514	Left	14	75	M14	25.40	36	20.0	25	25	155
65722.W0516	Left	16	85	M16	28.57	42	22.0	27	28	233
65722.W0517	Left	16	85	M16x1,5*	28.57	42	22.0	27	28	233
65722.W0518	Left	18	94	M18x1,5*	31.75	46	25.0	31	32	310

Order No.	Thread hand	d_{1}	I_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}	I_{2}	Weight g
65722.W0520	Left	20	102	M20x1,5*	34.92	50	27.5	34	33	386
65722.W0522	Left	22	111	M22x1,5*	38.10	54	30.0	38	37	520
65722.W0525	Left	25	124	M24x2*	42.85	60	33.5	42	42	705
65722.W0530	Left	30	145	M30x2*	50.80	70	40.0	50	51	1084
65722.W0531	Left	30	145	M27x2*	50.80	70	40.0	50	51	1084

Order No.	I_{3}	I_{4}	w_{1}	w_{2}	A/F	a_{0}	a_{0}	$\begin{gathered} \text { Dyn. load C } \\ k N \\ \max . \end{gathered}$	Static load C_{0} kN max.
65722.W0104	10	4.0	8	6.00	9	13.0	7.5	3.9	7.9
65722.W0105	10	4.0	8	6.00	9	13.0	7.5	3.9	7.9
65722.W0106	12	5.0	9	6.75	11	13.0	6.5	4.6	9.4
65722.W0108	12	5.0	12	9.00	14	14.5	7.5	7.0	14.1
65722.W0110	15	6.5	14	10.50	17	13.5	8.0	10.4	20.1
65722.W0111	15	6.5	14	10.50	17	13.5	8.0	10.4	20.1
65722.W0112	16	6.5	16	12.00	19	13.0	8.0	12.4	24.5
65722.W0113	16	6.5	16	12.00	19	13.0	8.0	12.4	24.5
65722.W0114	20	8.0	19	13.50	22	16.0	9.5	15.4	30.4
65722.W0116	22	8.0	21	15.00	22	15.5	8.5	22.4	43.7
65722.W0117	22	8.0	21	15.00	22	15.5	8.5	22.4	43.7
65722.W0118	24	10.0	23	16.50	27	15.0	9.5	26.3	51.2
65722.W0120	26	10.0	25	18.00	30	14.5	9.0	30.8	60.3
65722.W0122	26	12.0	28	20.00	32	15.5	10.0	38.2	70.0
65722.W0125	30	12.0	31	22.00	36	15.0	10.0	45.4	87.0
65722.W0130	35	15.0	37	25.00	41	17.0	10.5	55.0	106.8
65722.W0131	35	15.0	37	25.0	41	17.0	10.5	55.0	106.8
65722.W0504	10	4.0	8	6.00	9	13.0	7.5	3.9	7.9
65722.W0505	10	4.0	8	6.00	9	13.0	7.5	3.9	7.9
65722.W0506	12	5.0	9	6.75	11	13.0	6.5	4.6	9.4
65722.W0508	12	5.0	12	9.00	14	14.5	7.5	7.0	14.1
65722.W0510	15	6.5	14	10.50	17	13.5	8.0	10.4	20.1
65722.W0511	15	6.5	14	10.50	17	13.5	8.0	10.4	20.1
65722.W0512	16	6.5	16	12.00	19	13.0	8.0	12.4	24.5
65722.W0513	16	6.5	16	12.00	19	13.0	8.0	12.4	24.5
65722.W0514	20	8.0	19	13.50	22	16.0	9.5	15.4	30.4
$65722 . W 0516$	22	8.0	21	15.00	22	15.5	8.5	22.4	43.7
$65722 . W 0517$	22	8.0	21	15.00	22	15.5	8.5	22.4	43.7
65722.W0518	24	10.0	23	16.50	27	15.0	9.5	26.3	51.2
65722.W0520	26	10.0	25	18.00	30	14.5	9.0	30.8	60.3
65722.W0522	26	12.0	28	20.00	32	15.5	10.0	38.2	70.0
65722.W0525	30	12.0	31	22.00	36	15.0	10.0	45.4	87.0
65722.W0530	35	15.0	37	25.00	41	17.0	10.5	55.0	106.8
65722.W0531	35	15.0	37	25.00	41	17.0	10.5	55.0	106.8

65840

Material

Rod end housing - forged steel, tempered, case hardened bearing race, ground and lapped, surface galvanized.
Inner ring - ball bearing steel, hardened, superfine ground.

Lubrication - calcium-complex-soapgrease, temp range $-20^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$, lubrication nipple - DIN 3405 D1/A.

Technical Notes

Low maintenance, for tolerances see tech-
nical pages.
Tips
Standard thread is right hand thread.

Parts overview

Heavy Duty Rod Ends: integral spherical plain bearings - series K and series E Male and female rod ends, maintenance free. These are our most popular range of heavy duty rod ends. Bore diameters 5 mm up to 30 mm .

Spherical Plain Bearings: steel and stainless steel

65974 is our lowest cost, most popular option spherical bearing. Stainless steel version 65976 requires maintenance. 65974 is maintenance free. Bore diameters 5 mm up to 30 mm .

Heavy Duty Rod Ends: integral ball bearings series K and series E

Male and female rod ends. Different bore sizes in relation to the thread size. All require maintenance. Bore diameters 6 mm up to 30 mm .

Stainless Steel Heavy Duty Rod Ends: integral spherical plain bearings Male and female rod ends maintenance free.

Low Cost Rod Ends: with spherical plain bearing
These are our most popular male and female rod ends. Maintenance free.
Female-bore diameters 5 mm up to 12 mm .
Male-bore diameters 5 mm up to 16 mm .

All of our rod ends incorporate either a plain spherical bearing, ball bearing, or roller bearing. Below is an overview of each type.
(1) Thin coating made from Polyamid-PTFEfibreglass - compound, maintenance free, absorbs any foreign particles.
(2) Ball made of bearing steel, hardened, ground, polished and hard chromium plated, ensures reliable corrosion protection.
(3) No clearance - radial clearance $0-10 \mu \mathrm{~m}$.
4) All rod end housings made of forged steel, tempered, extremely high load resistances.

Plain spherical bearings

Ball and roller bearings

Rod ends and water

Stainless steel versions
Most of our rod ends are available in stainless steel as standard.

High grade AISI 316 stainless steel available on request.

$$
-1
$$

Rod ends with integral maintenance-free spherical plain bearings

Rod ends with integral ball bearings

Rod ends with integral

 roller bearingsIn many cases heavy-duty rod ends with integral spherical plain bearings are most often used. They are above all used for small swivelling or tilting movements at low speeds. They stand out for their high load capacity and can also be used for shock-like loads. The rod end ball slides on a plastic bearing shell consisting of a glass fibre-filled nylon/teflon compound. This design assures a maintenance-free rod end. Heavy-duty plain bearing rod ends have slight initial movement friction and virtually no clearance. The plastic material used has another advantage in that it can absorb many foreign particles so that no damage can occur. The balls of heavy-duty rod ends with integral spherical plain bearings are hard chrome plated. This reliable corrosion protection ensures that the function of the rod end will not be affected by a corroded ball surface under humid operating conditions.
This design is especially suitable for high speeds, large swivelling angles or rotating movements with relatively low or medium loads. Prominent technical features are the low bearing friction, long-time greasing as well as the sealing against some dirt pentration (by means of shields on both sides). Under normal operating conditions the rod ends are maintenance-free. Greasing nipples are provided for lubrication in case of rough operations and maximum loads. To avoid incompatibility with the production lubrication, we recommend lubrication with a calcium-complex-soap-grease. A special heat treatment procedure gives the rod end housing a raceway hardness adapted to the antifriction bearing, ensuring at the same time high stability with changing loads.

This design, based on the structure of a self-aligning roller bearing is preferably used for high speed, large tilting angles or rotating movements under high loads. Compared to rod ends with ball bearings, rod ends with self-aligning roller bearings essentially have higher basic load ratings. This design is equipped with a cage to minimise the rolling friction and heat build-up. These rod ends, with long-time lubrication are under normal operating conditions maintenance-free. Greasing nipples are provided for lubrication in case of rough operations and maximum loads. To avoid incompatibility with the production lubrication, we recommend lubricating with a calcium-complex-soap-grease. Shields on both sides limit dirt particles from penetrating into the bearing. The rod ends with roller bearings are subjected to a special heat treatment to obtain a raceway hardness adapted to the antifriction bearings, ensuring at the same time a high stability with changing loads.

Rod end bearings load capacity explained

Static load capacity C_{0}

 (plain bearings)
Static load capacity C_{0} (roller and ball bearings)

Dynamic load capacity C (plain bearings)

The static load capacity C_{0} is the radially acting static load which does not cause any permanent deformation of the components when the spherical bearing or rod end is stationary, (i.e. the load condition without pivoting, swivelling or tilting movements). It is also a precondition here that the operating temperature must be at normal room temperature and the surrounding components must possess sufficient stability.
The values specified in the tables are determined by static tension tests on a representative number of series components at $20^{\circ} \mathrm{C}$ normal room temperature. The static load capacity may vary with lower or higher temperature depending on the material. In the case of all rod ends with plain bearings, the static load rating refers to the maximum permissible static load of the rod end housing in a tensile direction up to which no permanent deformation occurs at the weakest housing cross-section. The value in the product tables has a safety factor of 1.2 times the tensile strength of the rod ends housing material.
For our rod ends with roller and ball bearings, the static load rating is the load at which the bearing can operate at room temperature without its performance being impaired as a result of deformations, fracture, or damage to the sliding contact surfaces ($\max 1 / 10,000^{\text {th }}$ of the ball diameter).

Dynamic load ratings serve as values for calculation of the service life of dynamically-loaded spherical bearings and rod ends. The values themselves do not provide any information about the effective dynamic load capacity of the spherical bearing or rod end. To obtain this information, it is necessary to take into account the additional influencing factors such as load type, swivel or tilt angle, speed characteristic, max. permitted bearing clearance, max. permitted bearing friction, lubrication conditions and temperature, etc.
Dynamic load capacities depend on the definition used to calculate them. Comparison of values is not always possible owing to the different definitions used by various manufacturers, and because the load capacities are often determined under completely different test conditions.

Dynamic load capacity C (roller and ball bearings)

Heavy-duty ball and roller bearing rod ends can be used for operating temperatures between $-20^{\circ} \mathrm{C}$ and $+120^{\circ} \mathrm{C}$. The temperature range of heavy-duty rod ends with integral spherical plain bearing is between $-30^{\circ} \mathrm{C}$ and $+60^{\circ} \mathrm{C}$, without affecting the load capacity. Higher temperatures will reduce the load capacity taken into account for the calculation of the 'working life' under the temperature factor C_{2} on page 451.

The decisive parameters for the selection and calculation of heavy-duty rod ends are size, direction and type of load.

The heavy-duty rod ends have been especially designed to cope with high radial loads. They can be used for combined loads, the axial load share of which does not exceed 20% of the corresponding radial load.

In this case the load acts only in the same direction, which means that the load area is always in the same bearing section.

In case of alternating loads, the load areas facing each other are alternately loaded and/or relieved, which means that the load changes its direction constantly by approximately 180°.

The swivelling angle is the movement of the rod end from one final position to the other. Half the swivelling angle a° is used to calculate the service or 'working life'.

Loads

Radial or combined loads

Unilaterally acting load Alternately acting load

Angle of tilt

Nominal service life

Working life

The angle of tilt, also called setting angle, refers to the movement of the joint ball and/ or the inner ring to the rod end axis (in degrees). The tilting angle (a) indicated in the table for the heavy-duty ball and roller bearing rod ends corresponds to the maximum possible movement being limited by the shields on both sides.
It is important that this tilting angle is not exceeded either during installation or operation, as otherwise the shields may be damaged. For heavy-duty plain bearing rod ends a distinction is made between the tilting angles (a1 and a2).
If the movement is not limited by adjacent components, then angle a1 can fully be used without affecting the rod end capacity. Tilting angle a2 is the movement limit when connecting a forked component.

The term 'nominal service life' is used for heavy-duty ball and roller bearing rod ends and represents the number of swivelling motions or rotations and/or the number of service hours the rod end performs before showing the first signs of material fatigue on the raceway or roller bodies. In view of many factors that are difficult or impossible to assess, the service life of several apparently identical bearings differ under the same operating conditions.
For this reason, the following method for the service life determination of heavy-duty ball and roller rod ends results in a nominal service life being achieved or exceeded by at least 90% of a large quantity of identical rod ends.

The term 'working life' is used with heavy-duty plain bearing rod ends. It represents the number of swivelling motions or rotations and/ or the number of service hours the heavy duty plain bearing rod end performs before becoming unserviceable due to material fatigue, wear, increased bearing clearance or increase of the bearing friction moment.
The 'working life' is not only influenced by the size and the type of load, it is also affected by a number of factors, which are difficult to assess. A calculation of the exact service life is therefore impossible.
Field-experienced standard values for the approximate 'working life' can nevertheless be determined by using the following calculation procedure which is based on numerous results from endurance test runs and values from decades of experience. The values determined by this formula are achieved, if not exceeded, by the majority of the heavy-duty rod ends.

d_{1}		$\underset{\text { Tolerance limit }}{\mathrm{d}_{\text {mp }}}$		$\mathrm{V}_{\mathrm{d} 1 \mathrm{p}}$ Max.	$\begin{aligned} & \mathrm{V}_{\mathrm{d} 1 \mathrm{mp}} \\ & \text { Max. } \end{aligned}$	Tolerance limit		$\mathbf{h}_{\mathbf{h}^{\prime}} \mathbf{h}_{1{ }_{1}}, \mathrm{~h}_{2 \mathrm{~s}}$ Tolerance lisit	
Over	Icl.	Upper	Lower			Upper	Lower	Upper	Lower
	6	+0,012	0	0,012	0,009	0	-0,12	+0,8	-1,2
6	10	+0,015	0	0,015	0,011	0	-0,12	+0,8	-1,2
10	18	+0,018	0	0,018	0,014	0	-0,12	+1,0	-1,7
18	30	+0,021	0	0,021	0,016	0	-0,12	+1,4	-2,1
30	50	+0,025	0	0,025	0,019	0	-0,12	+1,8	-2,7

$\mathrm{d}_{1} \quad=\quad$ nominal bore diameter of the inner ring or joint ball.
$\mathrm{d}_{1 \mathrm{mp}}=$ mean bore diameter deviation in one plane, arithmetical mean of the largest and smallest bore diameter.
$\mathrm{V}_{\mathrm{d} 1 \mathrm{p}}=$ bore diameter variation in one plane, difference between the largest and smallest bore diameter.
$V_{\mathrm{d} 1 \mathrm{mp}}=$ mean bore diameter variation, difference between the largest and smallest bore diameter of one inner ring or joint ball.
$\mathrm{b}_{1 \mathrm{~s}} \quad=\quad$ single inner ring or joint ball width deviation.
$h, h_{1}, h_{2}=$ single length from inner ring or ball bore centre to shank end.
$h_{s}, h_{15}, h_{s 2}=$ single length variation of a single rod end.

Heavy-duty rod ends
65700, 65720, 65740, 65742, 65760, 65780, 65800

Dimensions and tolerance symbols

Permissible load

The maximum load is defined by the static basic load rating C_{0}. If static loads are a combination of radial and axial loads, the equivalent static load will have to be calculated.

$$
\mathrm{P}_{0} \leq \mathrm{C}_{0}(\mathrm{~N}) \quad \mathrm{F}_{\mathrm{a}}=\text { Axial load }
$$

$F_{r}=$ Radial load
$Y_{0}=$ Axial factor, static, see individual product pages
$\begin{array}{ll}P_{0}=\text { Static equivalent load } \\ \text { Self-aligning ball bearing } & =P_{0}=F_{r}+Y_{0} \cdot F_{a} \\ \text { Self-aligning roller bearing } & =P_{0}=F_{r}+5 \cdot F_{a}\end{array}$
$Y_{0}=$ Basic static load rating (kN), see individual product pages

Nominal service life

For Rod Ends with integral self-aligning ball bearing 65740, 65742, 65760, 65820, 65840.

Rotating

$$
\mathrm{G}_{\mathrm{h}}^{\mathrm{rot}} \mathrm{=}=10^{6} \frac{\left(\frac{\mathrm{C}}{\mathrm{P}}\right)^{3}}{60 \cdot \mathrm{n}}(\mathrm{~h})
$$

Oscillating

$$
\mathrm{G}_{\mathrm{h}}=10^{6} \frac{\left(\frac{C}{P \sqrt[3]{\frac{B}{90}}}\right)^{3}}{60 \cdot f}(\mathrm{~h})
$$

For Rod ends with integral self-aligning roller bearing 65780, 65800.
Rotating
Oscillating

$$
\mathrm{G}_{\mathrm{h} \text { rot. }}=10^{6} \frac{\left(\frac{\mathrm{C}}{\mathrm{P}}\right)^{3,333}}{60 \cdot \mathrm{n}}(\mathrm{~h})
$$

$$
\mathrm{G}_{\mathrm{h}}=10^{6} \frac{\left(\frac{\mathrm{C} c .}{\left(P \sqrt[3]{\frac{\beta}{90}}\right.}\right)^{3,333}}{60 \cdot \mathrm{f}}(\mathrm{~h})
$$

Calculation example

At the rotating side of a crank mechanism a ball or roller bearing rod end should be installed. The expected service life amounts to at least 5000 hours.

$$
\begin{aligned}
& \text { Selected: } 65760 . \mathrm{w} 0108=4,0 \mathrm{kN} \\
& \begin{aligned}
\mathrm{G}_{\mathrm{h}} & =106 \frac{\left(\frac{\mathrm{C}}{\mathrm{P}}\right)^{3}}{60 \cdot \mathrm{n}}(\mathrm{~h}) \\
& =106 \frac{\left(\frac{4,0}{0,75}\right)^{3}}{60 \cdot 300}=8428 \mathrm{~h}>5000 \mathrm{~h}
\end{aligned}
\end{aligned}
$$

The maximum permissible load is calculated by using equation 1. If static loads are a combination of
Permissible load radial and axial loads, the equivalent static load will have to be calculated using equation 2.
Permissible load

Equation $1 \quad \mathrm{P}_{\max }=\mathrm{C}_{0} \cdot \mathrm{C}_{2} \cdot \mathrm{C}_{4}$	
Equation 2 $\quad \mathrm{P}=\mathrm{F}_{\mathrm{r}}+\mathrm{F}_{\mathrm{a}} \leq \mathrm{P}_{\max }$	
$\mathrm{P}_{\text {max }}=$	Maximum permissible load (kN)
$\mathrm{C}_{0}=$	Static basic load (kN), see individual product pages
$\mathrm{C}_{2}=$	Temperature factor, see below
$\mathrm{C}_{4}=$	Factor for type of load, see below
$\mathrm{P}=$	Equivalent dynamic load (kN)
$\mathrm{F}_{\mathrm{r}}=$	Radial load
$\mathrm{F}_{\mathrm{a}}=$	Axial load (kN$)$
	Condition: $\mathbf{F a} \leq \mathbf{0 . 2} \cdot \mathrm{F}_{\mathrm{r}}$

Temperature factor C_{2}

Up to $60^{\circ} \mathrm{C} \quad 1,0$.
$60^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C} \quad 0,8$.
$80^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C} \quad 0,7$.
$100^{\circ} \mathrm{C}$ to $120^{\circ} \mathrm{C} 0,8$.

Selection/Calculation Spherical-plain Bearings

Specific bearing load

$$
p=k \cdot \frac{P}{C}
$$

Known: Permissible pv-value $=0,5 \mathrm{~N} / \mathrm{mm}^{2} \cdot \mathrm{~m} / \mathrm{s}$
$P=$ Specific bearing load $\left(N / \mathrm{mm}^{2}\right)$
$\mathrm{C}=$ Basic dynamic load rating (N) see individual product pages
$k=$ Specific load factor $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ for tribological pairing
$\mathrm{k}=50 \mathrm{~N} / \mathrm{mm}^{2}$

Mean sliding velocity

$$
\mathrm{V}_{\mathrm{m}}=5,82 \cdot 10^{-7} \cdot \mathrm{~d}_{3} \cdot \beta \cdot \mathrm{f} \quad \mathrm{~V}_{\mathrm{m}}=\text { Mean sliding velocity }(\mathrm{m} / \mathrm{s})
$$

$\mathrm{d}_{3}=$ Pivot ball diameter (mm), see individual product pages
Known: Permissible sliding velocity $\mathrm{v}_{\max }=0,15 \mathrm{~m} / \mathrm{s}$
$B=$ Half swivelling angle (degree), for swivelling angle > 180°
$ß=90^{\circ}$ to be used
$\mathrm{f}=$ Frequency of oscillation (rpm)

Nominal service life

$$
\begin{aligned}
G & =C_{1} \cdot C_{2} \cdot C_{3} \cdot \frac{3}{d_{3} \cdot \beta} \cdot \frac{C}{P} \cdot 10^{8} \\
G_{h} & =C_{1} \cdot C_{2} \cdot C_{3} \cdot \frac{5}{d_{3} \cdot \beta \cdot f} \cdot \frac{C}{P} \cdot 10^{6}
\end{aligned}
$$

$\mathrm{G}=$ Nominal service life (number of oscillations or revolutions)
$\mathrm{G}_{\mathrm{h}}=$ Nominal service life (hours)
$\mathrm{C}_{2}=$ Temperature factor, see previous pages
$C_{3}=$ Material factor, see alignment chart on next page
$\mathrm{C}_{1}=$ Load direction factor
$C_{1}=1,0=$ Single load direction
Alternating load direction at $\mathrm{f}<30 \mathrm{rpm}: \mathrm{C}_{1}=0,250$
Alternating load direction at $\mathrm{f}>30 \mathrm{rpm}: \mathrm{C}_{1}=0,125$

Alignment

$$
\text { To find } \mathrm{C}_{3} \text { calculate } \mathrm{C}_{2} \cdot \frac{\mathrm{C}}{\mathrm{P}} \text { and on the chart below, read across to } \mathrm{C}_{3}
$$

$\mathrm{C}_{2}=$ Temperature factor
C = Basic dynamic load rating (N) see individual product pages
$P=$ Specific bearing load $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$

The rod end assembly of conveyor equipment calls for heavy-duty rod end with a service life of 7000 hours in conjunction with an alternating acting load of 5 kN .25 swivelling moments with a swivelling angle of 20° take place per minute. The operating temperature amounts to approx. $60^{\circ} \mathrm{C}$. The choice is a heavy-duty rod end 65880 .W0115 with: $\mathrm{C}=13,4 \mathrm{kN}, \mathrm{d}_{3}=22 \mathrm{~mm}$.

Checking the permissible load of the rod end

$$
\begin{aligned}
& \mathrm{P}_{\max }=\mathrm{C}_{0} \cdot \mathrm{C}_{2} \cdot \mathrm{C}_{4} \\
& \mathrm{P}_{\max }=41 \cdot 0,2 \cdot 1,0=8,2 \mathrm{kN}>5,0 \mathrm{kN} \\
& \mathrm{C}_{0}= 41 \mathrm{kN} \\
& \mathrm{C}_{2}= 1,0 \text { (temperature } 60^{\circ} \mathrm{C} \text {) } \\
& \mathrm{C}_{4}= 0,2 \text { (alternating load) }
\end{aligned}
$$

Checking the permissible sliding velocity

$$
\begin{aligned}
\mathrm{V}_{\mathrm{m}} & =5,82 \cdot 10^{-7} \cdot \mathrm{~d}_{3} \cdot \beta \cdot \mathrm{f}=5,82 \cdot 10^{-7} \cdot 22 \cdot 10 \cdot 25 \\
& =0,0032 \mathrm{~m} / \mathrm{s}<0,15 \mathrm{~m} / \mathrm{s} \quad
\end{aligned}
$$

Checking the p-V-value

$$
\begin{gathered}
\mathrm{pV}=\mathrm{p} \cdot \mathrm{~V}_{\mathrm{m}} \\
\mathrm{pV}=18,66 \cdot 0,0032 \\
=0,06 \mathrm{~N} / \mathrm{mm}^{2} \cdot \mathrm{~m} / \mathrm{s}<0,5 \mathrm{~N} / \mathrm{mm}^{2} \cdot \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

$$
\mathrm{p}=\mathrm{k} \cdot \frac{\mathrm{P}}{\mathrm{C}}=50 \cdot \frac{5000}{13400} \times 18,66 \mathrm{~N} / \mathrm{mm}^{2}
$$

Nominal service life

$$
\begin{gathered}
\mathrm{G}_{\mathrm{h}}=\mathrm{C}_{1} \cdot \mathrm{C}_{2} \cdot \mathrm{C}_{3} \cdot \frac{5}{\mathrm{~d}_{3} \cdot \beta \cdot f} \cdot \frac{C}{P} \cdot 10^{6} \\
\mathrm{G}_{\mathrm{h}}=0,25 \cdot 1,0 \cdot 12 \cdot \frac{5}{22 \cdot 10 \cdot 25} \cdot \frac{13,4}{5,0} \cdot 10^{6} \\
=7308 \mathrm{~h}>7000 \mathrm{~h} \nabla
\end{gathered}
$$

Known: $\mathrm{C}_{1}=0,25$ (alternating load direction, $\mathrm{f}=25 \mathrm{rpm}<30 \mathrm{rpm}$)

$$
\mathrm{C}_{3}=\mathrm{C}_{2} \cdot \frac{\mathrm{C}}{\mathrm{P}}=1,0 \cdot \frac{13,4}{5,0}=2,68
$$

$$
\text { See alignment chart } C_{3}=12
$$

$$
d_{3}=22
$$

$$
\mathrm{f}=25 \mathrm{rpm}
$$

Radial static load

Axial static load

The ultimate radial static load rating is measured as the failure point when a load is increasingly applied to a pin through the rod end's bore and pulled straight up while the rod end is held in place. Note that the actual rating is determined by calculating the lowest of the following three values:

1. Raceway material comprehensive strength (R value)

$$
R=E \times T \times X
$$

2. Rod end head strength (H value, cartridge type construction)

$$
H=\left[\left(\frac{T}{2} \sqrt{\left.D^{2}-T^{2}\right)}+\left(\frac{D}{2} \times \operatorname{Sin}^{-1} \frac{T}{2}\right)-(0 . D . \text { of Bearing } \times T)\right] \times x\right.
$$

Angle of $\frac{T}{2}$ expressed in radians
3. Shank strength (S value)

$$
\begin{gathered}
\text { Male Threaded Rod End } \\
S=\left[\left(\text { root diameter of thread }{ }^{2} \times .78\right)-\left(N^{2} \times .78\right)\right] \times X
\end{gathered}
$$

Female Threaded Rod End
$S_{2}=\left[\left(J^{2} \times .78\right)+(\right.$ major diameter of thread $\left.x .78)\right] \times X$
$\mathrm{E}=$ Ball diameter
$\mathrm{T}=$ Housing width
$X=$ Allowable stress
D $=$ Head diameter
$\mathrm{N}=$ Diameter of drilled hole in shank of male rod end
$\mathrm{J}=$ Shank diameter of female rod end

The axial static load capacity is measured as the force required to cause failure via a load parallel to the axis of the bore. Depending on the material types and construction methods, the ultimate axial load is generally $10-20 \%$ of the ultimate radial static load. The formula does not account for the bending of the shank due to a moment of force, nor the strength of the stake in cartridge-type construction.

Axial strength (A value)

$$
\begin{aligned}
& \mathrm{A}=.78\left[(\mathrm{E}+.176 \mathrm{~T})^{2}-\mathrm{E} 2\right] \times \mathrm{X} \\
\mathrm{X}= & \text { Allowable Stress (see table) } \\
\mathrm{E}= & \text { Ball diameter } \\
\mathrm{T}= & \text { Housing width }
\end{aligned}
$$

