

Spring Plungers smooth model, with collar and ball- stainless steel

Material

Body: stainless steel 1.4303 (AISI 305), brass, or thermoplastic POM, blue. Ball: ball bearing steel 1.3505 (100Cr6) hardened or thermoplastic POM, white. Spring: stainless steel 1.4568 (X7CrNiAl17-7).

Technical Notes

Used for locating, applying pressure or

lifting off.

Spring loads * = statistical average values. Thermo type temperature range -30°C to +50°C.

Stainless and brass type, temperature range max. 250°C.

For calculation of indexing resistance please refer to spring plunger technical pages.

Tips

These are press fit spring plungers. Typical hole tolerance is H7 for manual assembly. These fit tolerances vary with type of material so a trial hole is recommended. Light spring load- marked with one line. Standard spring load- no marking. Heavy spring load- marked with two lines. Special types available on request.

Order No.	Spring load	Finish	d ₁ -0 +0.1	d ₂	d ₃	I_1	₂ ≈	s_1	$\begin{array}{c} \text{Spring load} \\ \text{F}_1 \\ \text{N} \end{array}$	Spring load F ₂ N	Temperature °C max.	Weight g
22200 W0003	Standard	Rody & Roll Staiplace	3	220	35	10	06	0 70	≈ 1 Q	≈ 35	+250	0.20
22200 W0003	Standard	Body & Ball Stainless	1	2.50	3.5	4.0	0.0	1.0	2.5	5.5	+250	0.20
22200 W0004	Standard	Body & Ball Stainless	4	3.00	4.0	5.0	0.9	1.0	2,5	6.5	+250	0.30
32300.W0005	Standard	Body & Ball Stainless	5	4.00	5.0	7.0	1.0	1.40	5,0	0.5	+250	1.00
32300.W0000	Standard	Body & Ball Stainless	0	5.00	0.0	7.0	1.0	2.40	5,5	11.5	+250	2.10
32300.W0000	Standard	Body & Ball Stainless	10	0.50	0.5	9.0	1.1	2.40	7.0	12.5	+250	2.10
32300.W0010	Standard	Douy & Dall Stainless	10	0.00	12.0	15.0	1.0	3.30	0.0	16.5 20 F	+250	4.40
32300.W0012	Standard	Body & Ball Stainless	12	10.00	13.0	16.0	2.3	4.00	12.0	20.0	+250	7.30
32300.W0203	Standard	Body Brass, Ball Stainless	3	2.30	3.0	4.0	1.0	0.60	1.0	5.5	+250	0.20
32300.00204	Standard	Body Brass, Ball Stainless	4	3.00	4.5	5.0	1.0	0.80	3.0	6.0	+250	0.50
32300.00205	Standard	Body Brass, Ball Stainless	5	4.00	5.5	6.0	1.0	1.00	4.0	6.5	+250	0.80
32300.00206	Standard	Body Brass, Ball Stainless	6	5.00	6.5	7.0	1.0	1.60	6.0	11.5	+250	1.30
32300.00208	Standard	Body Brass, Ball Stainless	8	6.50	8.5	9.0	1.0	1.90	8.0	12.5	+250	2.80
32300.W0403	Standard	Body Thermo, Ball S/S	3	2.00	3.6	4.0	0.6	0.55	1./	3.5	-30/+50	0.09
32300.W0404	Standard	Body Thermo, Ball S/S	4	3.00	4.6	5.0	1.0	0.80	3.0	6.5	-30/+50	0.20
32300.W0405	Standard	Body Thermo, Ball S/S	5	4.00	5.6	6.0	1.0	1.00	6.0	9.4	-30/+50	0.40
32300.W0406	Standard	Body Thermo, Ball S/S	6	5.00	6.5	/.0	1.0	1.60	6.2	12.6	-30/+50	0.70
32300.W0408	Standard	Body Thermo, Ball S/S	8	6.50	8.5	9.0	1.0	1.90	10.0	20.4	-30/+50	1.50
32300.W0410	Standard	Body Thermo, Ball S/S	10	8.00	11.0	13.5	1.5	2.40	11.9	22.3	-30/+50	3.20
32300.W0412	Standard	Body Thermo, Ball S/S	12	10.00	13.0	16.0	1.5	3.30	14.0	25.0	-30/+50	5.80
32300.W0604	Standard	Body & Ball Thermoplast	4	3.00	4.6	5.0	1.0	0.80	3.0	6.5	-30/+50	0.10
32300.W0605	Standard	Body & Ball Thermoplast	5	4.00	5.6	6.0	1.0	1.00	6.0	9.4	-30/+50	0.20
32300.W0606	Standard	Body & Ball Thermoplast	6	5.00	6.5	7.0	1.0	1.60	6.2	12.6	-30/+50	0.30
32300.W0608	Standard	Body & Ball Thermoplast	8	6.50	8.5	9.0	1.0	1.90	10.0	20.4	-30/+50	0.60
32300.W0610	Standard	Body & Ball Thermoplast	10	8.50	11.0	13.5	1.5	2.40	11.9	22.3	-30/+50	1.50
32300.W0612	Standard	Body & Ball Thermoplast	12	10.00	13.0	16.0	1.5	3.30	14.0	25.0	-30/+50	2.50
32300.W1003	Light	Body Brass, Ball Stainless	3	2.38	3.5	4.0	0.6	0.70	0.4	1.3	250	0.10

Spring Plungers smooth model, with collar and ball- stainless steel

Order No.	Spring load	Finish	d ₁ -0 +0.1	d ₂	d ₃	I ₁	l₂ ≈	s ₁	Spring load F_1 N \approx	Spring load F ₂ N ≈	Temperature °C max.	: Weight g
32300.W1004	Light	Body & Ball Stainless	4	3.00	4.6	5.0	0.9	1.00	0.4	1.0	250	0.30
32300.W1005	Light	Body & Ball Stainless	5	4.00	5.6	6.0	0.9	1.40	0.5	4.7	250	0.60
32300.W1006	Light	Body & Ball Stainless	6	5.00	6.5	7.0	1.0	1.80	2.3	6.5	250	1.00
32300.W1008	Light	Body & Ball Stainless	8	6.50	8.5	9,0	1.1	2,40	4.0	9,0	250	2.10
32300.W1010	Light	Body & Ball Stainless	10	8.50	11.0	13,0	1.5	3,30	3.9	10,0	250	4.40
32300.W1012	Light	Body & Ball Stainless	12	10.00	13.0	16,0	2.3	4.00	6,2	14.6	250	7.30
32300.W2004	Heavy	Body & Ball Stainless	4	3.00	4.6	5,0	0.9	1.00	5,0	10.4	+250	0.30
32300.W2005	Heavy	Body & Ball Stainless	5	4.00	5.6	6,0	0.9	1.40	6,0	12.0	+250	0.60
32300.W2006	Heavy	Body & Ball Stainless	6	5.00	6.5	7.0	1.0	1.80	7.3	19.0	+250	1.00
32300.W2008	Heavy	Body & Ball Stainless	8	6.50	8.5	9.0	1.1	2.40	11.0	25.0	+250	2.10
32300.W2010	Heavy	Body & Ball Stainless	10	8.50	11.0	13.0	1.5	3.30	17.0	37.0	+250	4.40
32300.W2012	Heavy	Body & Ball Stainless	12	10.00	13.0	16.0	2.3	4.00	28.0	57.0	+250	7.30

Expander Fit Spring Plunger

smooth body - thermoplastic

SPRING PLUNGERS

Material

Body: thermoplastic POM, black. Ball: ball bearing steel 1.3505 (100Cr6) hardened or thermoplastic POM, white. Spring: stainless steel.

Technical Notes

Unique body design flexes to expand and contract to fit in location bore tolerances

as wide as + 0,2mm of d_4 . Especially suited to installation in plastic moulded components where hole and bore precision is not high.

Guarantees a secure overhead installation. Simple push fit design, no special tooling necessary.

For calculation of indexing resistance

please refer to spring plunger technical pages.

Tips

Spring load* - statistical average value. Temperature range -30°C to +50°C

See Wixroyd.com for: 32305 - Spring plungers - INCH

Order No.	Finish	d ₁ +0.1	d ₂	d ₃	d ₄ +0.2	Ι ₁ ±0.2	₂ ≈	s_1	Spring load F_1 N	Spring load F_2 N	Temperature °C	Weight g
32302.W0704	Body Thermo & Ball Stainless	4	3.0	4.6	4	5.0	1.0	0.8	~ 3.0	~ 6.5	-30/+50	0.12
32302.W0705	Body Thermo & Ball Stainless	5	4,0	5,6	5	6,0	1,0	1,0	6,0	9,4	-30/+50	0,34
32302.W0706	Body Thermo & Ball Stainless	6	5,0	6,5	6	7,0	1,0	1,6	6,2	12,6	-30/+50	0,63
32302.W0708	Body Thermo & Ball Stainless	8	6,5	8,5	8	9,0	1,0	1,9	10,0	20,4	-30/+50	1,40
32302.W0710	Body Thermo & Ball Stainless	10	8,0	11,0	10	13,5	1,5	2,4	11,9	22,3	-30/+50	2,90
32302.W0804	Body & Ball Thermo	4	3,0	4,6	4	5,0	1,0	0,8	3,0	6,5	-30/+50	0,06
32302.W0805	Body & Ball Thermo	5	4,0	5,6	5	6,0	1,0	1,0	6,0	9,4	-30/+50	0,17
32302.W0806	Body & Ball Thermo	6	5,0	6,5	6	7,0	1,0	1,6	6,2	12,6	-30/+50	0,23
32302.W0808	Body & Ball Thermo	8	6,5	8,5	8	9,0	1,0	1,9	10,0	20,4	-30/+50	0,57
32302.W0810	Body & Ball Thermo	10	8,0	11,0	10	13,5	1,5	2,4	11,9	22,3	-30/+50	1,21

Wixroyd Expander Fit Spring Plunger

smooth body

Struggle with inconsistent location bore tolerances and wide material variation?

Looking to reduce machining costs?

Our smooth body expander fit spring plunger offers a simple and accommodating solution - with the capacity to accommodate location bore tolerances as wide as +0.2mm.

Unique Expander Fit Design

Typically, unmachined plastic injection moulded holes can vary widely in accuracy, with sidewall variation of ± 1 to 2° .

Unique body design flexes to expand and contract to fit in location bore tolerances as wide as +0,2mm. Especially suited to installation in plastic moulded components where hole and bore precision is not high.

Expands/contracts to fit a range of hole tolerances from +0 to +0,2.

Unique Advantages

- Speed and flexibility in production and assembly.
- Removes need and cost of high tolerance machining and workpiece preparation.
- Easy push fit installation, no special tools or punches required.

Important Note

Important Note: It is not recommended to repeatedly install and uninstall expander fit spring plungers between locating bores of different tolerances, as such repeated action can lead to reduction of its capacity to expand into holes of wider tolerances (due to slight plastic fatigue).

As with all our smooth bodied spring plungers, best results are achieved when used as a single one-off installation.

Expander Fit Spring Plungers

smooth body, with collar and ball- stainless steel

Spring Plungers

32305.web

Material

Body: thermoplastic POM, black. Ball: stainless steel hardened. Spring: stainless steel.

Technical Notes

Used for locating, applying pressure,

detent or ejection.

Spring loads * = statistical average values. Temperature range -5°C to +50°C.

Tips

Typical location hole tolerance is 0,008 inch due to flexible body.

Special types available on request.

Order No.	d ₁ +0.004	d ₂	d ₃ inch	d ₄ +0.008	₁ ±0.01	l ₂	Stroke s inch	Spring load f ₁ Ib	Spring load f ₂ Ib	Weight oz
32305.W0050	3/16	0.157	0.220	3/16	0.236	0.039	0.039	1.3	2.1	0.01
32305.W0060	1/4	0.197	0.276	1/4	0.276	0.039	0.059	1.4	2.8	0.02
32305.W0080	5/16	0.256	0.335	5/16	0.354	0.039	0.075	1.9	4.5	0.05
32305.W0090	3/8	0.315	0.433	3/8	0.531	0.059	0.091	2.7	5.0	0.10
32305.W0120	1/2	0.394	0.551	1/2	0.630	0.059	0.126	3.1	5.6	0.18

Spring Plungers

Spring Plunger - Pin End - Smooth stainless steel - with collar

Technical Notes

Body: stainless steel 1.4303 (AISI 305). Pin: stainless steel 1.4305 (AISI 303), or thermoplastic POM white. Spring: stainless steel

Used for locating, applying pressure or

lifting off.

Thermoplastic type temperature range -30°C to +50°C. Stainless type, temperature range max. 250°C. Spring load * = statistical average value.

Tips

Special types available on request. A tolerance of H7 is recommended for the locating hole of d_1 .

Order No.	Pin type	d ₁ +0.1 +0.04	d ₂	d ₃	d ₄	d ₅ ±0.04	I ₁	l₂ ≈	₃ ≈	l₄ ≈	s ₁	Spring load F ₁ N ≈	Spring load F ₂ N ≈	Temperature °C max.	Weight g
32282.W0104	Stainless	4	2,8	4,6	3,85	4	10,7	0,9	1,8	5,6	2,7	3,0	8,2	+250	0,7
32282.W0105	Stainless	5	3,8	5,6	4,85	5	12,0	0,9	2,1	6,0	4,0	3,3	9,0	+250	1,2
32282.W0106	Stainless	6	4,8	6,5	5,85	6	15,0	1,0	2,3	8,2	5,5	6,1	12,0	+250	2,2
32282.W0108	Stainless	8	6,2	8,5	7,55	8	18,0	1,1	2,9	9,5	6,5	9,0	20,1	+250	4,2
32282.W0110	Stainless	10	8,1	11,0	9,55	10	26,0	1,5	4,2	14,3	8,0	16,2	29,0	+250	9,0
32282.W0124	Plastic	4	2,8	4,6	3,85	4	10,7	0,9	1,8	5,6	2,7	3,0	8,2	-30/+50	0,5
32282.W0125	Plastic	5	3,8	5,6	4,85	5	12,0	0,9	2,1	6,0	4,0	3,3	9,0	-30/+50	0,8
32282.W0126	Plastic	6	4,8	6,5	5,85	6	15,0	1,0	2,3	8,2	5,5	6,1	12,0	-30/+50	1,3
32282.W0128	Plastic	8	6,2	8,5	7,55	8	18,0	1,1	2,9	9,5	6,5	9,0	20,1	-30/+50	2,5
32282.W0130	Plastic	10	8,1	11,0	9,55	10	26,0	1,5	4,2	15,0	8,0	16,2	29,0	-30/+50	5,0

Spring Plunger - Ball End - Smooth stainless steel - with collar

32284

locating hole of d_1 .

Material

Body: stainless steel 1.4303 (AISI 303). Pin: stainless steel 1.4303 (AISI 303), Spring: stainless steel.

Technical Notes

Used for locating, applying pressure or

lifting off.

Temperature range max. 250°C. Spring load * = statistical average value.

Tips

Special types available on request. A tolerance of H7 is recommended for the

Order No.	d ₁ +0.10 +0.04	d ₂	d ₃	d ₄	d ₅ ±0.04	I_1	₂ ≈	₃ ≈	I ₄ ≈	Spring load F ₁ N ≈	Spring load F_2 N	Stroke s ₁	Weight g
32284.W1104	4	3.0	4.6	3.85	4	10.7	0.9	1.8	5.6	12.9	19.0	0.9	0.6
32284.W1105	5	4.0	5.6	4.85	5	12.0	0.9	2.1	6.0	19.3	29.2	1.3	1.0
32284.W1106	6	5.0	6.5	5.85	6	15.0	1.0	2.3	8.2	28.0	47.5	1.7	2.0
32284.W1108	8	6.5	8.5	7.55	8	18.0	1.1	2.9	9.5	40.0	67.3	2.3	4.0
32284.W1110	10	8.5	11.0	9.55	10	26.0	1.5	4.2	14.3	66.0	105.0	3.1	8.0

Spring Plungers

smooth model, without collar - stainless steel

Body: stainless steel 1.4305 (AISI 303). Ball: ball bearing steel 1.3505 (100Cr6) hardened. Spring: stainless steel

Spring Plungers

Technical Notes

Used for locating, applying pressure or

lifting off.

Temperature range up to +250°C. Spring load * = statistical average value.

Tips

These are press fit spring plungers, use tolerance of F8 for easy fit, or H9 when tight fit required. These tolerances vary

with material type, hence a trial hole is recommended. Special types available on request.

Order No.	Pressure	d ₁ ±0.04	d ₂	I ₁	s_1	Spring load F_1 N ≈	Spring load F ₂ N ≈	Weight g
32280.W0306	Standard pressure	2.0	1.0	3.5	0.3	0.8	1.5	0.1
32280.W0308	Standard pressure	2.5	1.5	5.0	0.40	2.8	4.7	0.2
32280.W0310	Standard pressure	3.0	2.0	7.0	0.7	4.5	7.5	0.4
32280.W0312	Standard pressure	3.5	2.5	9.0	0.8	6.0	14.5	0.6
32280.W0315	Standard pressure	4.0	3.0	11.0	0.9	8.0	14.0	0.8
32280.W0317	Standard pressure	4.5	3.2	12.0	1.0	9.5	16.5	1.1
32280.W0320	Standard pressure	5.0	3.5	13.0	1.0	11.0	18.0	1.5
32280.W0322	Standard pressure	5.5	4.0	14.0	1.2	15.5	25.0	1.9
32280.W0325	Standard pressure	6.0	4.5	15.0	1.5	18.0	31.0	2.3
32280.W0327	Standard pressure	8.0	6.0	18.0	2.0	24.0	45.0	5.0
32280.W0330	Standard pressure	10.0	8.0	20.0	2.5	26.0	49.0	8.3
32280.W0332	Standard pressure	12.0	10.0	22.0	3.5	41.0	86.0	12
32280.W0356	High pressure	2.0	1.0	3.5	0.3	1.3	2.2	0.1
32280.W0358	High pressure	2.5	1.5	5.0	2.5	4.7	7.1	0.2
32280.W0360	High pressure	3.0	2.0	7.0	0.7	7.8	11.6	0.3
32280.W0362	High pressure	3.5	2.5	9.0	0.8	12.0	18.0	0.5
32280.W0365	High pressure	4.0	3.0	11.0	0.9	15.0	22.0	0.7
32280.W0367	High pressure	4.5	3.2	12.0	1.0	18.7	25.1	1.0
32280.W0370	High pressure	5.0	3.5	13.0	1.0	19.3	26.6	1.4
32280.W0372	High pressure	5.5	4.0	14.0	1.2	25.1	39.2	1.8
32280.W0375	High pressure	6.0	4.5	15.0	1.5	36.0	60.5	2.3
32280.W0377	High pressure	8.0	6.0	18.0	2.0	57.0	103.5	5.2
32280.W0380	High pressure	10.0	8.0	20.0	2.5	61.0	110.0	8.5
32280.W0382	High pressure	12.0	10.0	22.0	3.5	68.0	143.0	13

wixroyd.com

Spring Plungers

Spring Plungers double ended

Material

Body: brass. Ball: stainless steel, hardened. Spring: stainless steel.

Technical Notes

Double ended spring plungers are used for axial locations and securing of bolts, as

well as a means of electrical contact (see diagram). Spring loads * = statistical average value.

For calculation of indexing resistance please refer to spring plunger technical pages.

Temperature resistance up to 250°C

Tips

Suggested hole tolerance for these spring plungers is H8. Special types available on request.

d₁ tol. h10 d₃ +0.05 Weight Order No. $|_1$ Spring load F₁ Spring load F₂ d_2 S Ν Ν g ≈ ≈ 32350.W0025 2.5 2.0 2.52 5.3 0.65 1.3 2.5 0.22 3.0 2.5 32350.W0030 3.02 7.3 0.80 2.0 4.5 0.34 32350.W0040 4.0 3.0 4.03 9.0 0.90 2.5 7.5 0.65 10.8 32350.W0050 5.0 4.0 5.03 1.20 3.5 8.0 1.27 32350.W0060 6.0 5.0 6.03 12.6 1.60 3.5 10.5 1.99 32350.W0070 14.0 4.0 2.00 12.0 3.00 7.0 6.0 7.03 32350.W0080 8.0 6.5 8.03 18.0 2.10 6.0 15.0 5.10

Spring Plungers smooth model, long

Body: free cutting steel, blackened. Pin: case hardened steel, blackened. Spring: stainless steel.

Technical Notes

Used as pulling off pins and spring stops in

tool making. No part of the spring plunger can come out of the retaining bore. Recommended installation hole tolerance H7. Temperature range up to 250°C. Spring load * = statistical average values.

Tips

Do not push pin beyond spring range ,s', as this will damage spring and result in reduction of spring load. Special types available on request.

Order No.	d ₁ 0 -0.05	d ₂	d ₃	I_1	I ₂	ا _ع	Spring load F_1 N \approx	Spring load F ₂ N ≈	s spring range	Weight g
32400.W0010	10	5.9	13	30	4.0	10	42	110	5.5	16.0
32400.W0006	6	2.7	8	20	3.2	6	10	22	3.5	4.2
32400.W0008	8	3.9	10	24	3.2	8	30	88	4.5	7.7
32400.W0012	12	7.9	16	36	5.0	12	50	130	6.5	27.0

Wixroyd Spring Plungers - A Range of Endless Possibilities

Wixroyd Spring Plungers - Uses and Mounting Options

wixroyd.com

Wixroyd Spring Plungers

quality products

Quality products every time

- Every spring plunger that is produced on the Wixroyd assembly line is individually tested. That is **100% Testing** how we guarantee the quality of our products.
- A Wixroyd spring plunger is tested against four key criteria during manufacture.

Wixroyd Spring Plungers

metric thread

Thread Details	ISO metric coarse threads (mm)												
All Wixroyd metric spring	Thread (D) 3 3,5 4 4,5 5 6 7 8 10 12 14 16 18 20 22 24												
plungers have a coarse thread.	Pitch 0,5 0,6 0,7 0,75 0,8 1,0 1,25 1,5 1,75 2,00 2,0 2,5 2,5 3,0												
Spring Loads	 Stroke, or movement of plunger's ball or pin. f₁ The force required in Newtons (N) to over come the static strength of the spring and achieve initial movement of the plunger's ball or pin. f₂ The force required in Newtons (N) to fully compress the spring until the ball or pin is fully depressed against the plunger's body. 												
Typical Spring Repetitions	Although dependent upon a number of application specific factors, we are able to give the following guide relating to the maximum number of spring repetitions or cycles of our spring plungers. • 100% or full stroke "s" used: approx. 300,000 cycles. • 65% of stroke "s" used: approx 10,000,000 cycles. • 65% of stroke "s" used: approx 10,000,000 cycles.												
Calculating Indexing Resistance	$\begin{array}{c} \alpha\\ \hline \\ \\ \hline \\ \hline \\ \\ \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline$												
	Important Note: This is only an approximation formula. For more accurate calculation the roughness of the counterpart surface as well as any variation in the plungers spring force (due to age or high repetitions) should be considered.If $\alpha = 90^{\circ}$ If $\alpha = 60^{\circ}$ If $\alpha = 24$ $\tan \frac{90}{2}$ $= 24N$ $Fx = \frac{24}{\tan \frac{60}{2}} = 41,5N$ If $\alpha = 120^{\circ}$ $Fx = \frac{24}{\tan \frac{120}{2}} = 13,8N$												
Electrical Conductivity	We are often asked the electrical conductivity of our spring plungers, unfortunately we are unable to provide any reliable information related to this as there are many factors in an application. We recommend you study the specific material properties of the spring plunger's component parts to make your own calculations, alternatively if in doubt make a test application.												
Specials to Your Own Design	Manufacturing exactly to your specific requirements is also our strength. If you need a variation in spring pressure, plunger body or pin design we can assist with a special design item for volumes as low as 1,000 units.												

For further information, or to request a quotation, please call our sales office on 0333 207 4497.

14

wixroyd.com